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1. INTRODUCTION

This report summarizes the results of an exploratory research

and development program involving spiraling-beam oscillators for

use at mm and sub-mm wavelengths. This program was initiated at

the NASA/Electronic Research Center in July 1967, and completed

in December 1970, within the framework of the Transportation

Systems Center, Department of Transportation, though still under

NASA sponsorship.

Spiraling-beam oscillators (or amplifiers) are devices in

which an ensemble of energetic electrons orbiting in a uniform

magnetic field is exposed to an r.f. electric field vector at

right angles to the electron axis of rotation. The r.f. field

vector itself rotates at a rate slightly faster than the electrons,

and the Lorentz force on the randomly phased electrons, together

with a slight relativistic mass dependence on the velocity,

produces a net bunching of the electrons into the decelerating

phase of the r.f. field vector, which is necessary to obtain

electronic gain. In the case of an oscillator, the gain is great

enough to overcome the ohmic losses of the system, and thus the

electric field becomes self-excited and will increase until

limited by non-linear effects in the beam-field interaction.

The decision to investigate spiraling-beam oscillators as

potential high-power mm-wave sources was based on a comprehensive

survey conducted in 1966 of electron-beam techniques used for

nun-wave generation (Ref. 1).
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This survey indicated that while ultra-miniature nun-wave

versions of conventional traveling-wave tubes and backward-wave

oscillators were either available or being developed commercially,

the power output of these tubes decreased very rapidly with

frequency, so that as of 1966, there were virtually no tunable

sources available which would produce more than 0.1 W between

300 and 1000 GHz. Figure 1.1 gives a more recent set of data,

which has remained essentially unchanged today. Those tubes

that do function in this frequency range are difficult to

manufacture, very costly, and relatively short-lived.

Research then in progress indicated that alternative means

of high-frequency power generation could eventually become

available in off-the-shelf form, for example, avalanche diodes

or cyanide lasers. Meanwhile, spiraling-beam (or fast-wave)

devices, though seemingly quite promising, had never really

left the realm of university laboratories. Some encouraging

experimental results at S and X band frequencies (Ref. 2, 3)

and at 135 GHz (Ref. 4) were augmented by analytical work

stressing the physical model of the interaction mechanism

(Refs. 5-9) but with one exception, industry showed little

interest in further development of the devices. Work on Bott's

tube (Ref. 4) was pursued (Ref. 10) at the Mullard Research

Laboratories, England, for about a year after Bott had published

his results. Impressive results were reported in the Russian

literature, for example, (Ref. 11). However, as the Russian
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Figure 1.1- Max. cw power output vs frequency, quoted for a
. leading commercial line of backward-wave oscillators,
using solenoid focusing. (Data taken from Micro-
waves , vol. 9, Sept. 1970, p. 27.)
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authors appear to be rather reticent about giving either complete

derivations of their mathematical expressions or details of their

experimental method, their papers proved to be of little help in

understanding the underlying physical mechanism. A summary of

the important experimental results reported in the literature is

given in Table 1.1. From the viewpoint of accomplishing a

significant experiment requiring a minimum of support facilities

and equipment, Bott's simple technique (Ref. 4) looked particularly

attractive, and thus it became essentially the starting point of

the work reported here.

The objective was to produce easily usable design information

and to probe for the upper bounds on power and frequency. The

long-range experimental plan was to include eventually both

spiraling cylindrical and trochoidal sheet beams, in both

traveling-wave and standing-wave field configurations. Time and

manpower constraints later limited the work to an investigation

of devices utilizing thin, solid, spiraling electron beams in

conjunction with cavity resonators; however, many of the insights

gained should apply equally to other types of periodic beams

interacting with fields supported by smooth (non-periodic) metallic

structures. In particular, it turned out that the energy spread

on the periodic electron beam emerges as probably the most

important limitation on the efficiency. This important fact has

been thoroughly investigated both theoretically and experimentally

during the course of this work.
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ĝ
£>

AJ O
o

o co
rH rH

f£

> g

0
CTl CN
i — I co

> £
o

in in

^ ^•^ g

o in
CN CN

01
en
rd
-P
H
O CU -P
K* T3 C

O CU
g 45 >-l
rd -P 5-1
CU rd d

PQ CJ O

, |
CU

•H
m c

1 0
T3 'H
CU -P
CO CJ
CO CU
0 T-,
M C
U -H

rH
CU

•H
MH G

1 O
T3 -H
CU -P
CO U
CO CU
O -n
M rn
U -H

T!
rH
CU

•H
4H G

1 O
13 'H
<U -P
CO O
CO CU
0 -n
r) C

CJ -H

jj
CU
M
U
CO

^J
0
U

ĈU
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2. THE INTERACTION OF A SPIRALING ELECTRON BEAM WITH A MICRO-
WAVE FIELD

In this discussion two different mathematical models for

beam-field interaction are considered, one corresponding to a

traveling-wave and the other to a standing-wave environment.

The latter model will be explored in greater detail, and calcu-

lations will be presented that illustrate the more important

design tradeoffs. Detailed comparison with experimental data

is deferred to a later portion of this report, so as not to

burden the more general picture given here.

2.1 Interaction with a Traveling Wave

Spiraling-beam interaction with an electromagnetic wave

supported by a smooth, hollow, metallic waveguide has been

analyzed by a number of authors; at first without allowing for

any relativistic mass change of the moving electrons (Refs. 5,

6), and later including a relativistic correction (Refs. 7,

13-16) . It was found that the latter forms a rather crucial

part in a complete description of the interaction mechanism,

despite the fact that the electron energies are not in the range

where one would ordinarily consider relativistic effects.

A sketch of the physical configuration is given in Figure

2.1. A section of smooth, hollow waveguide supports an electro-

magnetic wave propagating from left to right, e.g., in the

dominant rectangular TE (10) mode. A beam of randomly phased,

spiraling electrons enters the waveguide axially. In order for

interaction to take place, some sort of synchronism must first

2-1
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be established between the electric field vector, varying as

exp (- j ) (tot-k,,z) and the transverse velocity vector varying as

where:

= — = the cyclotron frequency

co = field frequency

k,, = — wave propagation constant
VP

u = axial velocity of the electrons

v = phase velocity of the field pattern

Direct synchronism would require u = v > c, which is

physically impossible. Instead, the field wave is allowed to

"move through" the much slower pattern of electrons. That is,

by setting fiT = toT-k,,L, where L is the small axial distance

traveled by an electron during one r.f . period T, one obtains the

so-called d.c. synchronism condition, given by:

(2.1)

In actual operation, the cyclotron frequency £2 is set

slightly below this value. The resultant frequency difference

(——) will be called the slip rate.
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If net power is to be transferred from the beam to the

field, the randomly phased electrons must be sorted, or bunched,

such that a majority of them begin and continue to move in the

retarding phase of the electric field. There are in fact two

different bunching mechanisms. The first is due to an axial

Lorentz force that arises from the transverse velocity component

in conjunction with the transverse r.f. magnetic field component.

Although the force is axial, the resultant bunching along the

helical electron trajectory is still, in effect, circumferential.

This mechanism is strongest far away from the waveguide cutoff

frequency, and it vanishes near cutoff as the transverse magnetic

field component goes to zero.

The second bunching mechanism arises from the relativistic

mass change (and the resultant change in the cyclotron frequency)

of electrons as they are accelerated or retarded by the transverse

electric field component. The change in the orbit frequency

serves to increase or decrease the initially existing slip rate

between the field and the moving electron, and the beam can be

made to either absorb energy from or to give up energy to the

electric field, depending on the direction of the initial slip.

Unlike the Lorentz-force bunching, the relativistic bunching

mechanism does not vanish near waveguide cutoff. In analyses

where both mechanisms have been included (Refs. 13, 14, 15),

/ Wc2\there arises a factor I 1 - —^— I which is proportional to the
\ <** I

ratio of the Lorentz bunching to the relativistic bunching rates,

2-4



i.e., the respective time derivatives of angular frequency.

Clearly, the Lorentz bunching vanishes as the operating fre-

quency to approaches the cutoff frequency w , whereas the

relativistic mechanism becomes stronger.

All the available closed-form analyses of spiraling beam-

traveling wave interaction, restrict themselves to the small-

signal regime, either implicitly by using a coupled-mode approach

(Refs. 5, 6, 13-15) or by linearizing the formidable equations

generated from a ballistic approach (Refs. 7, 16). Large-signal

numerical integration of the equations of motion has been

carried out in two cases, one to predict Bott's results (Ref. 7)

and another to compare with Kulke's early experimental data

(Refs. 17, 18).

In order to keep the large-signal expressions tractable for

computation, series expressions were truncated beyond the second-

order terrrs, and neither analysis allows for the presence of

velocity spread on the beam. However, both papers provide an

informative study of the electronic gain mechanism.

2.2 Interaction with a Standing Wave

When the waveguide section of Figure 2.1 is closed off with

a metallic shorting plane on either or both ends, a standing

wave results. (Small holes allow the beam to pass through the

end planes.) The physical situation now resembles the electric

field of an r.f. - driven capacitor acting on the beam, i.e.,

2-5



the device becomes a Cuccia coupler with axially varying field

intensity. The Lorentz force due to the r.f. magnetic-field

component changes polarity every half cycle and so has negligible

effect. The resulting interaction was first analyzed by

Schneider (Ref. 19) in quantum-mechanical terms, and in greater

detail, classically, by Hsu and Robson (Ref. 8), and by

Hirshfield, Bernstein, and Wachtel (Ref. 9). This last paper

forms the starting point of much of the analytical work in this

report, and hence it will be outlined below in greater detail.

The approach of Hirshfield, et al., starts from statistical

mechanics, and this permits one to take into account a finite-

width velocity distribution among the electrons. This analytical

technique offers a great advantage over other analyses mentioned

before, because of the importance of the velocity spread on the

beam. The electron beam inside the interaction region is

considered as an axially drifting, ion-neutralized column of

electrons, with each electron orbiting at the cyclotron frequency

about a magnetic flux line. Given the d.c. electron velocity

distribution, the linearized Boltzmann-Vlasov equation is then

solved for the perturbed (a.c.) part of the distribution

function in terms of the known electromagnetic field components

within the interaction region. Only the transverse electric

field component is retained as significant. For the case of

the TE(Oll) cylindrical resonator discussed by Hirshfield, et al.,

this is given by the following:
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E, = a"g E J, (k,r) sin k,,z cos wt (2.2)

The r.f. convection current density J follows by integrating

over the electron velocity distribution, and the power flow from

the beam to the r.f. electric field E, is derived by integrating

the J-E product over the interaction space. (It is assumed that

the rf field configuration is identical to that which would exist

in the absence of the beam.) The result is, for a sinusoidal

axial field variation:

eV
P = j —— P (kj_a) / dw / du hQ (u,w)

mkll

w3

u U L""ll w j

(2.3)
where

kiiu

G(x) =

Q(x) = x - ̂
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where

£2 = cyclotron frequency

to = frequency of r.f. field

k, , = ? — = axial propagation vector
11 xg

kj_ = transverse propagation vector

w,u = transverse, axial velocity

E = magnitude of r.f. electric field vector

h (u,w) = unperturbed velocity distribution function

The quantity p (kĵ a) represents the electron number density

N weighted by the transverse electric field variation over the

beam cross-section. For example, if the interaction takes place

in the strong electric field region of a TE0,.. cylindrical

cavity, then:

) N(r,6) dA

beam area

Clearly, the interaction mechanism is described by the

double integral term in Eq. (2.3). If a mono-energetic beam

is assumed, the velocity distribution becomes a double delta

function:

ho(u'w) = 6(u-u> 6(W-W) (2'4)

where the term in the denominator arises from the necessary

velocity-space normalization of the distribution function in

cylindrical coordinates. Equation (2.3) then becomes:
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eE2

P = - — p(kj_a) G(x) (l+3Q(x)) (2.5)
4mklluo

where

U UQ0

The so-called gain function G (x) (l+3Q(x)) here describes

the basic interaction. It should be noted that for a given set

2 2"1L - X /X enters as

a parameter both through 3 and through the function Q(x). In

Figures 2.2 and 2 . 3 we have plotted the gain function vs x with

both 3 and'k,,/k as a parameter, in order to emphasize its

dependence on both the transverse energy and on the proximity to

waveguide cutoff.

The paper by Hirshfield, et al. , shows only a plot similar

to Figure 2.2, and an unwary reader may miss the importance of

the k..,/k dependence. The region of greatest interest is x < 0

where the gain function goes negative, indicating that power is

emitted by the beam. Clearly, the electronic gain increases both

with increasing transverse energy and with closer proximity to

cutoff. Physically, the latter dependence simply reflects the

fact that in a cavity resonator, the transverse electric field

component, with a sinusoidal axial variation, always extends over

a distance of one-half guide wavelength. The theoretical cavity

2-9



Figure 2.2.- The Gain Function G(x) [l+$Q(x)] plotted vs x = :-——,
Klluo

kllc wo
with k,-,/k=0.5. The parameter is 3 = • .II7 ^ co u c
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length increases without bound as k,,/k decreases, and so the

electrons get to spend more and more time in the interaction

region, for a given axial drift velocity.

In both Figures 2.2 and 2.3, the gain function is seen to

reach a negative maximum near x = -1, corresponding to the

maximum amount of r.f. power being extracted from the beam. This

condition can be written as:

= n-o) SVu c
x - klluo w uc

The standing-wave pattern in the cavity resonator can be

expressed as two oppositely-traveling wave components. The

phase velocity of either component is given by:

v =
P 2

^c

and this leads to the condition for the maximum-gain, given by

the expression:

(2.7)

Equation 2.7 is identical to the d.c. synchronism condition

for traveling-wave interaction, Eg. (2.1), consequently, leading

to the conclusion that the standing-wave interaction is really

an interaction with one traveling-wave component of relatively

2-11



Figure 2.3.- The Gain Function G(x)"[l+BQ (x) ] plotted vs . ""
Klluo

with 6=0.34. The parameter is k,,/k.
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high amplitude over a relatively short distance. An analogy is

possible with a linear-beam klystron cavity of the extended-

interaction type (Ref. 20). Another conclusion that can be

derived is the following. It should be possible to increase the

length of the interaction region of a well-behaved beam by an

arbitrary number of resonant half-wavelengths, and thereby to

increase the efficiency of the interaction. Bott's successful

experiments (Ref. 4) did in fact use a multi-wavelength, low-Q

resonator, although his resonant modes were never clearly

identified.

The dependence on the transverse beam energy (essentially,

eVo) of the mono-energetic gain function is linear. This follows

directly from Eg. (2.5), as 3, and hence the .gain, increases

linearly with transverse energy.

It will be evident from Figures 2.2 and 2.3, that a thresh-

old value exists for both k,,/k and 3 below which it is

impossible to get electronic gain. For example, with k-iT/k = 0.5,

one must have 3 > 0.34, and with 3 = 0.34, one must have

k,,/k < 0.5 in order to get gain. In practice, the cavity would

be designed as close to waveguide cutoff as possible, thereby

fixing the value of k,,/k. This, in turn, defines a threshold

2 2on 3 and, hence, on w /c , the minimum value of transverse energy

2 2
that will produce gain. In order to deduce w /c from the

known 3, a reasonable value of u /c must be assumed. In Figure

2.4, we have plotted the threshold value of transverse energy

2-13
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Figure 2.4.- Threshold value of transverse energy plotted vs
A/XC, where Xc is the cutoff wavelength of the
waveguide resonator. The parameter is the energy
of axial motion of the electrons.
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vs A/A , with the energy of axial motion as a parameter. Theo

values chosen for the latter represent a realistic operating

range. From Figure 2.4, it is seen that the energy threshold

will be minimized by operating close to waveguide cutoff and

by using a beam with a low axial drift velocity. In practice,

the beam is not mono-energetic, of course, and the electron

energies are spread out over a finite range. The electronic

gain will be less than that of the mono-energetic beam and the

gain threshold for the (average) transverse energy will be

higher. The following section will be devoted to a more detailed

study of the gain behavior when there is finite velocity spread

present on the beam.

2.3 Interaction with a Standing Wave in the Presence of Velocity
Spread

In this section, the expressions analogous to the gain

function G(x) (1 + 3Q(x)), will be derived in a form that is

valid for a beam of spiraling electrons that are distributed

over a finite range of axial and transverse energy. Going

back to Eq. (2.3), it will be recalled that the gain mechanism

is described by a double integral over velocity space. For a

mono-energetic beam, this integral becomes, trivially:

du dw (.-••) = (1 + 3Q(x)) (2.8)

In following the notation of Hirshfield et al., the factor 1/iru

was suppressed in discussing the mono-energetic gain function

2-15



G(l + BQ) of the previous Section. For a beam with finite

velocity spread, however, the double integration is no longer

trivial and all terms must be included. In order to obtain

convenient numbers, we shall define and calculate a normalized
)

gain function:

N. G. F . 5 cjj (• • •) du dw (2.9)

where c is the velocity of light in vacua.

The actual form of the distribution is, of course, closely

tied to the method of generating the beam. The beams used in

the experimental devices are described in another section.

Direct measurements on a typical beam showed that the axial

velocity distribution was sufficiently flat-topped so that a

simple rectangular form constitutes a reasonable approximation,

given by:

f(u) = fQ, UQ < u < u1 (2.10)

over a range Au = u, - u . If one assumes that the overall1 o

distribution can be represented as a simple product:

h(u,w) = f (u)g(w) (2.11)

then normalization requires that, in cylindrical velocity space:

du dw f (u)g(w) = 1 • (2.12)
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Substituting Eq. (2.10) we find:

•x , W _ W _ W,
2TTW O 1

where gQ is a constant, and finally:

(2.13)

f _

ogo (u,-u ) (w,-w, AuAw (2.14)

The definition of g(w), Eq. (2.13) reflects the fact that as

electrons are crowded out of an axial velocity range Au by

adiabatic conversion of momentum, they fall into an annular area

2-rrwdw in a transverse plane of velocity space, and thus the

density g(w) decreases as w increases.

Substituting Eqs. (2.10) and (2.13) into Eq. (2.9) and

dropping the minus sign in front, the following is obtained for

the normalized gain function:

N.G.F . = c
•rrAu 2£L ax + K2

xn

/ G ( x ) Q ( x ) d x (2.15)

where

and the limits x , x, correspond to u , u, respectively. As a

check on Eq. (2.15), we note that it reduces to Eq. (2.8) for
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the mono-energetic case. The integrals involving G(x) and Q(x)

were calculated numerically, and the normalized gain function

has been plotted as a function of the negative slip rate, ^—,

in Figures 2.5 and 2.6. The parameters X/X and V were chosen

as actual values corresponding to an X-band experimental device.

A rectangular velocity distribution has been assumed, extending

from the origin to some finite value. However, in order to get

agreement with the gain behavior observed experimentally, the

assumption is made that the slowest electrons (axially) are

excluded from the r.f. interaction, presumably because of d.c.

space-charge effects to which these electrons are most susceptible,

A lower limit of 15eV was found to give a reasonably good fit to

the experimental results, and the curves in Figure 2.5 have been

calculated with this assumption. The gain curves plotted in

Figure 2.6 illustrate the effect of moving the lower limit of the

energy range contributing to gain. Clearly, the gain increases

when the distribution is moved closer to the origin. This

behavior is similar to that of the gain function calculated for

a mono-energetic beam, which is plotted in Figure 2.7. (It will

be evident that all these curves are basically the negative lobe

of an absorption characteristic of the type shown in Figure 2.2,

replotted in the first quadrant for simplicity.) The main effect

of the velocity spread therefore is to decrease the maximum value

of the gain characteristic. This is illustrated in Figure 2.8,

where the maxima of the curves of Figure 2.5 are plotted as a
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Figure 2.5.- Normalized gain function for an axial-velocity range
corresponding to energies from zero to some finite
value, which is the parameter. The lower limit of the
energy range actually contributing to gain is 15 eV.
Implicit parameters are A/A =0.693 and V =12 kV.
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Figure 2.6.- Normalized gain function for a fixed axial-velocity
range corresponding to energies from 0-100 eV. The
parameter is the lower limit of the energy range
actually contributing to r.f. gain. Implicit para-
meters are A/A = 0.693 and V = 12 kV.c o
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Figure 2.7.- Normalized gain function corresponding to a 12 kV
monoenergetic beam with \/\c = 0.693. The parameter
is the axial energy.
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Figure 2.8.- The maximum value of the normalized gain function
for a 12 kV beam, with X/AC = 0.693, plotted as a
function of the axial energy spread, 0-AV. The
energy range actually contributing to gain extends
from 15 V to AV. The points are derived from
Figure 2.5, and they are closely approximated by
the line N.G.F. = 5000/AV.
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function of the velocity spread. In fact, the calculated points

can be fitted with surprising accuracy by a very simple curve,

N.G.F. = 5000/(AV).

The mechanism by which very slow electrons are excluded

has not been analyzed in detail. Such an 'analysis would involve

a tedious solution of Poisson's equation for the potential

within an ensemble of electrons spiraling in a strong confining

magnetic field. However, Pierce (Ref. 21) has given an expression

for the space-charge-limited current in a rectilinear electron

beam confined by an infinite magnetic field, in terms of the

potential at the beam edge, V . If in Pierce"s expression

V = 15 volts, is assumed, then the limiting current is of the

order of 2mA. As the operating current of the experimental tubes

ranged anywhere from 1mA to 10mA or more, it seems reasonable to

assume that space charge forces become significant for electrons

with axial energies near 15eV.

Because the slowest electrons also produce the greatest gain,

the fact that their exclusion appears to be inherent in the

device constitutes an important limitation.

The dependence of the gain function on the transverse energy,

i.e., the beam voltage, is linear for the mono-energetic beam,

and the same can be expected to be true for a beam with finite

velocity spread, from simple superposition. An experimental

test of this assumption is difficult, however, because the

velocity spread cannot be monitored accurately.
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From Figure 2.8, it is evident that the gain decreases as

the width of the axial velocity range increases. A fixed lower

limit of the r.f. interaction range, such as in Figure 2.5,

corresponds to the situation most likely to occur with an actual

device. For this case, the maximum gain decreases as 1/AV. On

the other hand, AV generally is proportional to the total beam

energy, V , and it is reasonable to assume that the calculated

gain increases linearly with V . Thus we expect that the actual

gain will remain approximately constant as V is increased

because AV increases right along with it. The r.f. power level,

on the other hand, is likely to increase as the d.c. beam power

goes up. An optimum beam voltage therefore cannot be derived

from the small-signal gain function, and the operating voltage

used in a practical device instead must be set on the basis of

the desired r.f. power level, given an expected value of

efficiency.

2.4 Design of the Interaction Region

As the very rationale of periodic-beam devices implies

their ability to utilize smooth, mechanically uncomplicated

wave-guiding structures, the design of the interaction region

is rather straightforward. In keeping with the emphasis of

this report, we shall consider only standing-wave interaction.

The problem of designing a good resonator consists of

selecting a geometry that will place a beam of given diameter

into a region of transverse electric field possessing maximum
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axial and transverse uniformity over the beam volume. A Cuccia

coupler, i.e., a pair of capacitor plates forming part of a

lumped-constant resonant circuit, offers a good solution at

frequencies below about 1 GHz. At microwave frequencies, such

a coupler can be approximated by a half-wavelength resonant

section of waveguide. The axial field uniformity will depend

on the guide wavelength where:

A =g - ^l
and clearly X , and the field uniformity over a gain axial

length, will increase as the waveguide cutoff is approached.

An extension of the resonator to multiples of a half-

wavelength appears to be reasonable in view of the basic identity

of traveling- and standing-wave interaction. (An analogous

approach has long bean used in linear-beam extended-interaction

klystrons.) However, experimental cavities longer than a half

wavelength produced poor results (no observable gain) in the

author's laboratory, although Bott's tube (Ref. 4) successfully

had used a multiple-wavelength resonator. In any case, this

discussion will be confined to simple half-wavelength resonators.

An upper limit on A is imposed, both by the difficulty of

coupling to a waveguide resonator very close to waveguide cutoff,

and by the requirement that the axial magnetic field must be

uniform to about one part in 1000 over the interaction length.
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This second constraint becomes unimportant, however, at wave-

lengths of 3mm or less, because for the required field strengths,

the cost of typical magnet systems is not dominated by the

necessary interaction lengths. The requirement of field uniformity

does impose an economic constraint at X-band, however, where the

cost of the electromagnet used with an experimental device goes

up rapidly with the working volume.

Two resonator modes mainly are of interest here. First,

the TE(lOl) rectangular mode is the lowest-order resonance of

a simple rectangular enclosure. Both Chow and Pantell (Ref. 2)

and Schriever and Johnson (Ref. 3) successfully used simple

dominant-mode rectangular waveguide in their spiraling-beam

devices, in a non-resonant configuration. However, the TE(Oll)

cylindrical mode has a larger Q and it also provides a bigger

volume to accommodate the beam. Unfortunately, this mode is

degenerate with the TM(lll) mode, and the latter may have to be

suppressed. One observes that the TE(Oll) is the lowest-order

member of the family of "barrel modes", TE(n, 1, 1), any of

which could furnish a region of transverse electric field for

interaction with the beam. However, the azimuthal polarization

associated with all but the TE(Oll) mode can lead to coupling

problems. In addition, the TE(Oil) has by far the greatest Q

among the TE(n, 1, 1) family. In normalized form, this can be

written as (Ref. 22):
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3/2

2TT

(2.16)

for a circular TE(n, 1, 1) cavity of radius a and length d,

where 6 is the skin depth and A the free-space wavelength,s o

The Pnl are the zeros of the appropriate Bessel function, i.e.,

p 1 = 3.832, p,, = 1.841, etc. In Table 2.1, some numerical

values are given for the case where A/A = 0.95, where A is
c*> c

the cutoff wavelength of the TE , mode in cylindrical guide ofn, J.

radius a.

TABLE 2.1.- NORMALIZED QUALITY FACTORS FOR THE
TE^ ln MODES, ASSUMING A/A =0.95n / x j_ . c

n

0

1

2

3

4

5

Q

0.

0.

0.

0.

0.

0.

6s
A

66

23

30

35

38

42
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The cavity Q, by itself, provides only a rather vague yard-

stick for cavity design, however. A more useful figure of merit

for cavity performance can be derived from the expression for

the r.f. power, P, given up by the beam, Eq. (2.3). It will be

noted that the cavity characteristics appear only through the

2 2
term Eo/

kin- In order for oscillations to start, the power

derived from the beam must equal or exceed the ohmic losses

W of the cavity plus the external load:j_i

P = WTlj

From Eq. (2.3), the start-oscillation current will then be

inversely proportional to a quantity having the dimensions of

an impedance:

: ̂  ..V1 « -^— = K (2.17)startj k^wL

This will be termed the interaction impedance. As the ohmic

loss can be written W = ̂ , the interaction impedance becomes:

E2Q
K = —2— (ohms) (2.18)

where U is the energy stored in the cavity. If only internal

losses are considered, Q = QQ, and K = KQ then depends entirely

on the cavity geometry. On the other hand, external loading is
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easily accounted for by setting Q = QT, the loaded Q. ExpressionsJj

for Q and K have been derived for both the TE(101/ rectangular)

and the TE(011, cylindrical) resonators, and these are given in

Table 2.2. These expressions have been derived from equations

given in the literature (Ref. 13). Both Q and K are normalized

to 6 /A where 6 is the skindepth and X is the free-space wave-s s

length. In formulating the expressions for K , the peak value

of electric field was assumed to hold over the entire beam cross-

section, neglecting any small correction factors that would

arise from averaging. For the beams used here, this approximation

produces a maximum error in K of about five percent.

Figure 2.9 gives the plots of K and Q vs X/X . Clearly,

despite its relatively low Q , the rectangular TE(lOl) mode has

about double the interaction impedance of the circular mode, and

it was selected for this reason in the X-bahd prototype devices,

as well as for the first model of the 94 GHz device. However,

the somewhat greater physical size of the TEQ,, cavity is

attractive at mm wavelengths, and so this mode was chosen for

the second 94-GHz tube.

The design parameters for some resonators that were used

in actual working devices, are listed in Table 2.3. Resonators

Nos. 1-3 were coupled magnetically to a feeder waveguide via a

round aperture in the narrow wall of the guide. Resonator No. 4

had its WR 10 feeder guide on the beam axis, and the coupling

took place via a short section (1.2 mm) of the same waveguide
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rotated 90° about the axis, i.e,, a section below cutoff for

the dominant mode.

In the final experiment at 94 GHz, a circular TE(Oll)

resonator was used, with dimensions 4.1-mm diameter x 5.3 mm

length. This was coupled to a WR-10 feeder waveguide through

a 0.94 mm diameter round iris in the O.Ol-mm thick sidewall,

which made the cavity undercoupled with VSWR =.3.5 at f = 92.59

GHz. The theoretical Q was 5000, and the measured QT waso LI

estimated at better than 1300. The calculated interaction

impedance is K = 320 kfi.

2.5 Summary

In this section, we have investigated the small-signal

electronic gain arising from the interaction of a spiraling

electron beam with either a traveling-wave or a standing-wave

electromagnetic field. It was found that the basic interaction

is one between the spiraling electrons and a traveling wave,

even in the standing-wave environment. Device operation close

to waveguide cutoff results in the greatest amount of electronic

gain, and in this range the dominant bunching mechanism is due

to the relativistic mass change of the electrons as they are

accelerated or retarded by the electric field component of the

traveling wave. D.C. space-charge forces appear to prevent

axially slow-moving electrons from participating in the r.f.

interaction, and the faster electrons are spread out over a

finite energy range. Both these factors are basic device
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limitations which reduce the electronic gain to a small

fraction of that attainable with an ideal mono-energetic beam

of near-zero axial drift velocity. There exists a threshold

value for the beam voltage below which there is no electronic

gain. However, an optimum value of V cannot be derived from

the small-signal gain characteristics.

The geometry of the interaction region can be optimized in

terms of an interaction impedance that derives from the gain

equation. Design curves and examples are given for two typical

resonator geometries.
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3. AN EXPERIMENTAL SPIRALING BEAM

In this section, we shall discuss some techniques which

were used to generate spiraling electron beams, together with

the characteristics of typical beams. It should be mentioned at

the outset that the spiraling-beam guns designed in the course

of this program were very simple. However, the importance of

beam quality, in terms of velocity spread, did emerge very

clearly, and any future work on these devices should concern

itself first and foremost with the development of an electron

gun capable of producing a nearly monoenergetic spiraling beam.

3.1 Generation of a Spiraling Electron Beam

The discussion in the last section emphasized that the

dominant requirement in a spiraling beam device is, simply, that

the electrons should have as narrow as possible an energy spec-

trum, with practically all the energy being transverse. The

ideal case then is a delta function velocity distribution. In a

practical beam, the electron energies will be spread out over a

finite range, however, and the width of this range is closely

tied to the method of generating the beam.

The approach to beam design used in this project was

essentially adopted from some previous, successful experiments

made elsewhere (Refs. 4,9). A sketch of the basic scheme is

shown in Figure 3.1. One starts with a thin (1-3 mm dia.)

rectilinear beam launched from a diode or triode gun, immersed

in a magnetic field of 3 to 4 times the theoretical minimum
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required to focus the beam stably. The beam then travels through

a drift region where a magnetic corkscrew (Ref. 23) sets up a

space-periodic, transverse, magnetic field component with a

strength of about 1% of the axial field intensity. The corkscrew

action causes a momentum conversion on the beam, adiabatically

changing as much as 10% of its (initially axial) energy into

rotational energy. A mildly spiraling beam results, where the

spiral itself remains fixed in position, much like a snaking

garden hose through which electrons are running. (This was

verified photographically in a special beam tester.) Further

momentum conversion takes place as the beam drifts into a region

of increasing magnetic field, i.e., up a magnetic ramp, to the

point where practically all its energy is transverse. The beam

at this point has become an ensemble of energetic electrons

tightly spiraling about individual magnetic flux lines as guiding

centers, and drifting axially at a relatively slow rate.

Figure 3.1 depicts an X-band device to scale in the measured

axial magnetic field profile, together with the calculated beam

diameter. The field strength is plotted as a function of distance

along the axis.

The magnetic-field profile was generated from a long thin

solenoid (laser coil, 10-cm bore, 76-cir. long) for the low-field

region, and a set of four short, butted solenoids (plasma coils,

10-cm bore, 10-cm long) for the high field. All coils were

water-cooled. The plasma coils could not.be positioned at the
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Helmholtz spacing because of the width added by their cooling

pancakes, and this made it physically impossible to produce a

perfectly smooth high-field plateau. These coils were later

replaced by a regular Helmholtz system consisting of two solenoids

(11.5-cm bore), with each solenoid made up of two halves that

each were spaced at the Helmholtz distance by centrally located

cooling pancakes.

While the earlier ripples in the high-field plateau did

not seem to produce any observable effect on the r.f. interaction

directly, they may have caused some charge trapping which then

resulted in ion oscillations. For example, with a 15-kV beam

from a 2-mm dia. cathode, a 100-kHz oscillation appeared on the

collector current pulse with an amplitude of about 5% of the

total pulse height. At a pressure of 2.5 x 10 Torr, this

instability would appear about 15 - 20 ysec, after the start of

the pulse, and would lose coherence after another 20 ysec,

becoming essentially noise at this point. The time of onset

showed a clear dependence on the pressure, when the latter was

allowed to rise by turning off the getter pump. The identical

instability also appeared on the r.f. pulse. No such instability

was observed after the Helmholtz system had been installed.

The use of iron in the magnetic circuit was generally

avoided in order to retain maximum flexibility in adjusting the

ramp geometry. However, soft iron cladding was eventually used

around the low-field solenoid in order to shield it from the
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high field, which otherwise tended to upset the axial-field

uniformity along the low-field plateau. The corkscrew design

has been discussed in a previous report (Ref. 17) and will only

be sketched here. The corkscrew typically consisted of a

section of quadrufilar helix that was found from #14 enameled

copper wire, with a constant pitch given by:

27TU m
-2- (3.1)

where u and B are the axial beam velocity and the axial magnetic

field in the gun region, respectively. The winding was done by

hand, with the aid of a pencil sketch of the developed helix

that was rolled as a template around the 16-nun dia. drift tube.

The length of the corkscrew section was determined by the axial

distance over which the low-field plateau remained uniform within

1%, typically, about 25 cm. The corkscrew was driven with direct

current of 3A - 10A magnitude. A typical example of corkscrew

action is shown in Figure 3.2.

When the low field is tuned to cyclotron resonance, the

corkscrew action produces a dip in the collector current. Both

the height and the width of this dip increase as the corkscrew

current is raised.

The electron guns used in this work were simple Pierce

designs using 1-, 2-, or 3-mm dia. dispenser-type cathodes. A

first anode was used to control the beam current, and a second
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Figure 3.2.- Typical focusing characteristic, showing the effect
of the corkscrew action on the collector current.
The dashed line indicates the simple focusing action
of the low field, (ICork

=°) resulting in increased
transmission as the control-anode interception is
reduced. The solid line shows the corkscrew action
superimposed, with Icork=5.5A. Design parameters
are Vo=12 kV, 1 mm dia. cathode, corkscrew pitch
= 7 cm (quadrufilar), dia. 1.6 cm, length 25 cm, low
field 32.1 Gauss/A, high field 3500 Gauss.
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anode served to accelerate the beam up to the operating potential.

Beam current sometimes also was controlled by temperature-limiting

the cathode. The anodes typically were flat molybdenum or Cu-Ni

disks, 2.22 cm dia. x 0.13 cm thick, with a small opening for beam

passage. They were held either by a three-rod ceramic frame or

by a set of boron-nitride bushings. The gun structure was built

up on a stainless-steel vacuum flange which irade it easily de-

mountable for cathode replacement or minor design changes. All

the guns contained identical 10-W heaters. The perveance was of

the order of 0.01 micro perv. Further details about beam voltages

and currents are given in connection with the experimental results

Because the corkscrew action produces a finite amount of

velocity spread on the beam, and because the magnetic ramp

amplifies this spread linearly, the electrons are distributed over

a wide energy range by the time they reach the top of the ramp.

Inevitably some electrons will exceed the point of 100% energy

conversion and will be mirrored back towards the gun, while

others may not reach the range of axial velocity that allows them

to interact with the r.f. fields. As a result, the beam is used

very inefficiently, as typically only 30% or less of the current

emitted from the cathode actually passes through the interaction

region, with the rest being mirrored back. The r.f. conversion

efficiencies are quoted here in terms of the collector current,

and these numbers would be smaller by a factor of three or more
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if the cathode current were used as a basis for calculating

the efficiency.

3.2 Energy Distribution

When the importance of the corkscrew-generated velocity

spread became apparent during this work, a retarding-field

analyzer was built and set up to measure the energy distribution

of a typical beam (Ref. 24).

Briefly, these measurements indicated that in the absence

of space-charge effects, the corkscrew will generate a relatively

narrow, near-rectangular axial energy distribution when the

axial magnetic field is tuned to near cyclotron resonance. The

normalized width of this distribution is nearly independent of

the degree of energy conversion, in agreement with the theory,

and the mean transverse (converted) energy varies as the square

of the corkscrew current. The magnetic ramp amplifies both the

mean transverse energy and the energy spread linearly, as expected

from the assumed adiabatic conversion.

Actually, the magnetic ramp itself can also be used to

analyze the axial energy spread produced by the magnetic cork-

screw, if a simple conversion relation is used to transform the

magnetic ramp data into the more familiar retarding-field analyzer

form (Ref. 25). Figure 3.3 shows some axial velocity distributions

for a 4-kV, 200-viA beam with an initial diameter of 1 mm, measured

with the electrostatic analyzer with a constant mirror ratio

M = 8.53. The parameter is the corkscrew current. (The mirror
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ratio is defined as the ratio of the high-field to the low-field

magnetic field intensities, M = B,/B ).

It should be noted that there is a one-to-one correspondence

between the axial and the transverse energy distributions,

because energy is conserved. Hence, a movement of the axial

energy distribution towards lower energies, as I , is raised,

will be accompanied by a corresponding movement of the trans-

verse distribution towards higher energies.

When the corkscrew is tuned slightly above cyclotron

resonance, such as in Figure 3.3, the axial distribution becomes

reasonably rectangular, and constant in width and it will here

be approximated as such. An idealized operating situation is

shown in Figure 3.4, where a fraction of the electrons are

already being mirrored, while the r.f. interaction takes place

over the remaining part of the energy distribution. By mirroring

a part of the beam, we are thus, in effect, simulating a new beam

with less current and with a narrower energy distribution, and

the r.f. interaction must be analyzed in terms of this new beam.

Because it proved to be very difficult to make direct measurements

of this new narrow distribution, especially the part close to the

origin, a simple rectangular shape continued to be the working

assumption.

The width of the entire distribution can be estimated from

a knowledge of the energy spread introduced by the corkscrew.

From the data obtained with the retarding-field analyzer (Ref. 24),

this spread was typically near 5% for guns and corkscrews of the

3-9



I 400

| 300
>-
<D

5 200

>~ 100

4.9A

'cor* *°

500 1000 1500 2000 2500 3000 3500 4000 4500

V,, (volts)

Figure 3.3.- Axial energy distribution measured on a 4 kV,
200 yA beam with initial diameter 1 mm, after
passage through a quadrufilar-helix magnetic
corkscrew of length 33 cm, pitch 3.33 cm, and
diameter 1.6 cm. The parameter is the cork-
screw current. The mirror ratio is M = B,/B
= 8.53. The low field is adjusted to a value
3.5% above nominal cyclotron resonance.
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type used here. Given a mirror ratio of about 10 for the X-band

experiments, this results in an estimated overall energy spread

near 50%. The magnetic-field profile used at 94 GHz had mirror

ratios up to 100, corresponding to a total energy spread up to

500%, if the simple theory is followed. Actual operating

conditions at X-band were such that only about one-third or less

of the beam current reached the collector, with the rest being

mirrored back. This would correspond roughly to a 15% spread

of the effective distribution, based on the simple model of

Figure 3.4.

From this model, one would also expect to see some electronic

gain as soon as the collector current begins to decrease due to

the mirroring action. This, in fact, is the case, and as the

corkscrew current is increased from zero the observed gain first

increases to a maximum and then decreases again. The exact

behavior follows from the normalized (average) gain character-

istics discussed in the previous section, multiplied by the

number of available electrons, i.e., the collector current. A

calculation of this type is performed in the following section.

In summary, while the method of generating a spiraling beam

with a corkscrew-magnetic ramp combination is very simple and

very flexible in laboratory applications, it is not recommended

for commercial devices of this type, because of the wide energy

distribution that appears to characterize it. Any further

development work on periodic-beam devices certainly should place
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the strongest emphasis on the design of a good beam. Conceivably,

more direct methods of generating the spiraling trajectory could

result in less velocity spread. For example, guns where the

cathode-anode geometry is tilted in the magnetic field have been

used successfully by other workers (Refs. 3,10).

f(V,)4

MIRRORED 7
ELECTRONS!

{INTERACTING
[ELECTRONS

v,,

Figure 3.4.- Approximate model of a typical operating distri-
bution of the axial electron energies. Only a
small energy range near the mirroring point is
being utilized in the r.f. interaction.
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4. EXPERIMENTAL TECHNIQUES AND RESULTS

In this section, we shall summarize and discuss the results

of experiments made with a number of prototype spiraling-beam

amplifiers, all of which were built in-house. The objectives

of these experiments were, first, to verify the small-signal

model, and to acquire a reasonable working knowledge of this

type of device, and second, to arrive at some quantitative estimate

of the practical limits on power level, efficiency, and frequency.

First, the instrumentation will be described.

4.1 Instrumentation and Measurement Techniques

A basic sketch of a typical experimental setup has already

been given in Figure 3.1, in this case, for the first X-band tube.

The design parameters for the different cavity resonators used

were listed in Table 2.3. In the following, we shall discuss

the detailed instrumentation, a sketch of which is drawn in

Figure 4.1.

The two high-field coils were each driven, somewhat

marginally, by one HP6459A supply. These supplies were voltage-

controlled from a common, variable, well-regulated d.c. voltage

source. This method of control accomplished the necessary

ganging of the supplies, while at the same time permitting vernier

changes in individual current settings. The supplies were

monitored individually by means of digital voltmeters connected

across 0.01 ohm current-sensing resistors, and this assured

accurate day-to-day duplication of high-field settings. The
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low-field solenoid also was driven from a well-regulated supply,

and its current was monitored with a digital voltmeter.

In order to avoid problems of Joule heating and d.c. voltage

breakdown, the tubes were operated pulsed-cathode only, with

pulse lengths from 10-50 ysec at 60 pps. Line synchronization

was found to be necessary in order to stabilize the oscilloscope

displays, especially those of low-level r.f. signals. Both the

beam voltage and the collector current were scope-monitored,

while the cathode and first-anode current were metered conven-

tionally. Where it was desirable to drive an X-Y recorder from

the pulse amplitude either of the collector current or of the

r.f. output signal, the pulse train was converted to a d.c.

amplitude by using a boxcar integrator.

The r.f. circuitry was designed to perform the dual function

of measuring r.f. gain with a probing signal fed in, or of

measuring output power after self-excited oscillation had begun.

The power measured used a calibrated crystal together with a

precision waveguide attenuator. The gain measurement was

accomplished by comparing the return loss (or VSWR) with the

beam ON to that with the beam OFF. Further details will be

discussed, in conjunction with the measured results.

The instrumentation used for the 94-GHz experiment was very

similar to that shown in Figure 4.1. A superconducting magnet

generated the high-field plateau, i.e., 35 K gauss in a 2.4-cm

dia. bore at room temperature, uniform to 1 part in 1000 over a
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distance of 1.5 cm, with a driving current of about 17A. A

special power supply was used to drive this magnet, with features

such as automatic sweep at a very low rate, and with various

trigger devices to protect both the magnet and the power supply

from dangerous voltage transients in case of accidental quenching

of the superconducting coil.

4.2 Measurement of Electronic Gain

We now come to the important measurement of the small-signal

electronic gain. This is the quantity that serves to validate

the small-signal theory and, hence, our understanding of the

device operation. All these measurements apply to a rectangular

TE(lOl) resonator made from standard WR90 waveguide (No. 2 in

Table 2.3). The coupling was magnetic, with a round iris placed

in the narrow wall of the waveguide cavity. The resonator was

driven with a 12-kV beam from a 1-mm dia. cathode, for the gain

measurements, and with a 15-kV beam from a 2-mm dia. cathode,

for the start-oscillation-current measurements.

To a reasonable approximation, a resonant cavity can be

represented by the equivalent circuit of Figure 4.2, where G ,

represents the wall losses and G the external loading (Ref.

26) . The interaction of the beam with the cavity fields will

cause a beam-loading conductance G to appear in parallel with
C

G , and G ,. At resonance, the reactive elements cancel and
sh ext

the VSWR looking into the cavity will be given by:
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GextVSWR (beam ON) = = e* r
\J , T ljsh e

When the beam is turned OFF, G =0, and we have:

p vt~
VSWR (beam OFF) = pr̂ ^ (4.2)

Gsh

In Eqs. (4.1) and (4.2) we have implicitly assumed overcoupling,

that is, Gext > Ggh + GQ . For example, the X-band TE(lOl) cavity

was overcoupled, and VSWR (OFF) = 4.7 in that case. If the

cavity were undercoupled instead, then the reciprocals of Eqs.

(4.1) and (4.2) would hold, so that VSWR > 1 always. Only the

range G < 0 is of interest, and clearly VSWR (ON) will become

negative when |G I > G , . Negative-resistance amplifiers have

been discussed in the literature (Ref . 27) .

Combining Eqs. (4.1) and (4.2), the beam-loading conductance

becomes:

5sh V

= /VSWR (OFF) _ \
XJVSWR (ON)

Oscillations will start when the beam-loading conductance becomes

sufficiently negative to overcome both the cavity wall losses

and the losses due to power coupled out of the cavity. However,

a measurement of start-oscillation current does not give as

complete a picture of small-signal behavior as a direct measurement

of G , or electronic gain, under stable (non-oscillatory) conditions,
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4.2.1 Small-Signal Range.- In order to determine just what level

of the probing signal constituted a "small-signal" input to the

device, the r.f. power emitted by the beam was measured as a

function of drive level. . This was done by comparing the power

reflected from the cavity with the beam ON, to the incident

power, i.e., the power reflected from a waveguide short.

The results show (Figures 4.3 and 4.4) that the gain

mechanism saturates very rapidly, at drive power levels near

0.2 mW and with the output power at a level below 1% of the d.c.

beam power. This result is very important, for it indicates a

behavior typical for a maser amplifier, (Ref. 28). Interestingly,

it was in terms of quantum electronics (Ref. 19) that the

relativistic gain mechanism was first discovered, and spiraling-

beam amplifiers were first referred to as cyclotron-resonance

masers. This term later was avoided after the analysis of

Hirshfield et al., (Ref. 9) had proven that a classical treatment

was both possible and reasonable, at least for the linear region.

The buildup mechanism toward saturation can be explained

heuristically in terms of Figure 4.2. If an r.f. voltage V is

assumed to exist across the equivalent circuit, then the power

emitted by the beam is given by:

P(beam) = (1/2) V2Ge (4.4)

2
But as we shall see below, G is itself proportional to V , in

the small-signal approximation, so that as the r.f. power level
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Figure 4.2.- Simplified equivalent circuit of a microwave
resonator loaded both externally (G t) and by
the presence of an electron beam (Ge).

1% EFFICIENCY

R ,mWin '
Figure 4.3.- Gain saturation characteristic, for the

resonator at fo = 9.460 GHz, with QL = 650. Beam
parameters are Vo = 12kV, IColl

 = Icoll(max-)
= 0.4 mA. The net r.f. power added by the beam, P
saturates at less than 3% of the d.c. beam power. U
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P.n , mW

Figure 4.4.- Gain saturation characteristic, expanded version
of Figure 4.3. The collector current here is
Icoll = °-06 mA- Saturation begins at a drive
power level near 0.2 mW.
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in the cavity increases, G increases, which again raises the

2power level and V . Clearly this built-in feedback mechanism

will continue until limited by nonlinearities.

The use of quantum-mechanics is a powerful tool in under-

standing the nature of these nonlinearities. The transverse-

energy distribution of the spiraling d.c. beam represents a

population inversion over a part of the ladder of closely-spaced

Landau levels, corresponding to electrons orbiting in a confining

magnetic field (Ref. 29). Each electron tends to relax to the

next lower, less populated level, and in so doing emits a photon

at the cyclotron frequency. In analogy with three-level maser

action, one may designate the beam power flow V•.I ,, repre-

sented by the transverse electron energies, as pump power. This

quantity is kept constant in Figures 4.3 and 4.4. As the signal

power increases, more and more downward transitions are stimulated,

until eventually the populations are in equilibrium, and no more

maser action is possible. If the input power is increased beyond

this point, net power absorption may result, as some electrons

are "pumped" back up to higher levels. This effect actually was

observed experimentally with input power levels of less than a

watt.

The fact that the gain saturates at an efficiency of less

than 3% probably is not a basic device limitation, but rather is

specific to this particular device and the relatively large

energy spread of its beam. In effect, only a fraction of the
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beam supplies non-equilibrium electrons, because the others are

out of synchronism with the stimulating signal and hence do not

participate in the maser action.

4.2.2 Operation at a Multiple of the Cyclotron Frequency.

The simple model of Figure 4.2, with G a negative, voltage-

dependent conductance, makes it tempting to look for harmonic

content in the output signal. The practical advantage of

operating, for example, with only half the magnetic field, at

a given frequency is obvious. A strenuous search was undertaken,

in fact, to detect some interaction with the second harmonic of

the cyclotron frequency, but this was unsuccessful. In terms

of the maser model, second-harmonic interaction corresponds to

quantum jumps between nonadjacent Landau levels (quadrupole

transitions). The calculated probability of the latter, compared

to the probability of the fundamental (dipole) transitions, turns

out to be very small, and so one would not expect any harmonic

output. It is possible, however, to design the resonator field

configuration in such a way that the fundamental, purely circular

cyclotron rotation of the electrons excites a higher cavity mode,

and hence, a higher frequency of oscillation. Such an overmoded

resonator was used successfully by Gaponov, et al. (Ref. 11),

who excited the TEn 0 , mode in a circular-cylindrical cavity
U , £. i -L

with a hollow-beam arrangement of individually spiraling electrons

(see also Table 1.1). This approach probably could be extended

to generate 4th or 5th harmonics of the cyclotron frequency, the
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main limiting factor being the decreased interaction impedance

as the mode order is increased.

4.2.3 Measurement of the Beam-Loading Conductance. - We now

return to the actual measurement of G /G ,. For comparison with

the theory, it is necessary to convert the normalized-gain charac

teristics of Section 2 to curves of beam- loading conductance.

Again referring to Figure 4.2, the r.f. power dissipated in the

cavity walls is given by:

WL = !/2 sh (4'5)

From this and Eq. (4.4), we find:

P (beam)
G , w -sh L

where P (beam) has been given in Eq. (2.3).

The impedance term and the gain function have already been

discussed, and there only remains p (k .a) . For a TE ,, _,> rectangular

cavity, where the beam fills a very small part of the cross

sectional area, we can write, approximately,

p(kj_a) = /(NdA) = Tra2N (4.7)

beam area

where N is the electron number density:

N = — | — (4.8)
ira eu
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Furthermore, for a rectangular axial velocity distribution,

u here becomes <u>, the arithmetic mean of the limits, so that:

p(kla) = £<§> (4'9)

Using Eq. (2.15) to eliminate W , and substituting into

Eq. (2.3), there results, finally:

G~ = I ' mt • K

which is the desired relation.

In measuring the beam-loading conductance, it was convenient

to sweep the magnetic field, and thereby to generate a curve of

G /G , vs the slip parameter —7̂ , or its negative. A set ofG s n Cu

such measurements is plotted in Figure 4.5, together with theo-

retical curves that were derived from the normalized-gain charac-

teristics discussed in Section 2.

The relevant device parameters are listed below:

Frequency = 9.460 GHz

Initial beam dia. = 1 mm

Low-field strength = 350 Gauss

High-field strength = 3433 Gauss (center value)

Beam voltage = 12 kV

Collector current (with Icork
 = 0) Icoll = 3.8 mA

(with I_^ = 5.5A) Icoll = 2.3 mA

(with Icork = 6.25A) Icoll =0.53
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Figure 4.5.- Measured values of beam-loading conductance plotted
over a range of the slip parameter. The data repre-
sent two different operating conditions with
corkscrew current as the controlling parameter. The
solid lines represent two of many possible fits of
the theory to the data, with the assumed axial energy
distribution as indicated. The abrupt drop in
measured gain near n-u/co = 0.008 is not understood.
The probing-signal level was about 3 mW.
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Cavity geometry = TE(lOl) rectangular, T— = 0.693
AC

Cavity impedance K = 1.14 x 10 ohms

Cavity Q = 3600 (measured), QT = 650O L

Estimated total velocity spread, before mirroring, — - 0.50
o

As it was inconvenient during this measurement to use r.f.

drive levels that were small enough to stay in the linear-gain

region of the device, probing signal power levels near 3 mW were

used. The resulting beam-loading conductance actually turns out

to differ but little from the value corresponding to the observed

small-signal gain of 16 dB (see Figure 4.3), which is G /G , = -4.4,

and we, therefore, can reasonably use the slightly saturated

(but easily measurable) values in Figure 4.5 as a basis for

further discussion. The data shown in Figure 4.5 actually repre-

sent two different operating points, corresponding to corkscrew

currents of 5.5A and 6.25A, respectively. As the corkscrew

current is increased, a greater fraction of the beam is mirrored,

and so the collector current decreases from a maximum of 3.8mA,

for zero corkscrew current, to 0.53mA, for I , = 6.25A. This

type of operation appears to be typical of beams generated by a

corkscrew-mirror combination, and it is obviously wasteful of

beam current. It does, however, reduce the effective velocity

spread for that portion of the electrons which are not yet mirrored.

The larger collector current corresponds to the inclusion of a

greater portion of the energy distribution, and hence produces

less average gain per electron than the smaller current.
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The measured gain for both currents is about the same, however.

As is seen in Figure 4.5, a reasonably good fit to these data

can be obtained with theoretical gain curves based on an assumed

axial energy spread of 0-100 eV for the smaller beam current and

0-300 eV for the larger current, with the active range for r.f.

interaction extending from 15eV on upwards.

From the gain behavior illustrated previously in Figures

2.5 and 2.6, it is clear that any decrease in the calculated gain

due to greater velocity spread, can easily be compensated by

moving the lower limit of the "active" velocity range closer to

the origin. The experimental data, therefore, could also be

fitted with characteristics calculated for a wider energy range,

which might actually be somewhat more realistic. For example,

if the total estimated energy spread were 50%, then the observed

mirroring action would result in estimated effective spreads of

840V and 3600V, respectively, assuming the model of Figure 3.4

to be correct. As both the effective spread and the lower limit

of the active range are subject to conjecture, however, calcula-

tions were not pursued further. It has been demonstrated that

the theory can be fitted to the experimental data, but without

an accurate knowledge of the effective energy distribution an

analytical prediction of the measured results is not possible.

The necessity of having to assume a priori an energy

distribution could be eliminated if a measurement of the latter

were possible simultaneously with the gain measurement. Such
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measurements were attempted, using the magnetic mirror system

itself to act as an energy analyzer, but they turned out to

subject to large errors in the region of greatest interest, i.e.,

near zero collector current, because of current instabilities,

and they were later abandoned. A commercially useful device

would, of course, be designed to utilize the entire beam, with

a specified, narrow velocity distribution. For such a device,

the theory presented here probably can predict the small-signal

gain with reasonable accuracy, subject only to a correct estimate

of the lower limit of the energy range actually contributing to

the gain. This estimate is not likely to vary from tube to tube,

however, and presumably could be derived both from analysis and

empirically.

It should be noted in passing that a rather high degree of

uncertainty with regard to the axial drift motion of the spiraling

electrons, appears to have characterized spiraling-beam amplifier

work from the very beginning. Chow and Pantell (Refs. 2,5) allow

for a 50% possible error in their estimate of the axial velocity,

which was derived from a time-of-flight measurement, and their

start-oscillation results naturally are subject to the same error.

Hsu (Ref. 7) predicted Beasley's (Ref. 10) start-oscillation

currents only to the correct order of magnitude, and incidentally,

he was the first to point out the -uncertainty that is introduced

by an unspecified axial velocity distribution. Schriever, et al.

(Ref. 6), also obtained order-of-magnitude estimates of the axial

velocity, both from Doppler-shift and time-of-flight measurements,
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but they made no attempt to get a detailed correlation with

measured start-oscillation currents. The work reported here,

therefore, constitutes the most accurate validation to date of

the small-signal behavior of spiraling-beam amplifiers.

In order to test the effect of the probing-signal level

on the measured beam-loading conductance directly, data were

taken with the probing power reduced by a factor of 10, to

P, =0.3 mW, and the results are plotted in Figure 4.6. Clearly,

G /G , reaches essentially the same maximum as before (Figure 4.5)

but the magnetic line width has been reduced sharply. >

4.2.4 Start-Oscillation Current.- The dependence of the small-

signal gain on the beam voltage is illustrated in Figure 4.7

where the measured start-oscillation current is plotted as a

function of V . This measurement refers to the same device used

to generate Figure 4.3. For each beam voltage, the operating

parameters were first adjusted to produce r.f. oscillations. The

cathode was then temperature-limited to reduce the beam current,

while both the corkscrew current and the high-field vernier control

were adjusted continuously to maintain the oscillations down -to

as low a beam current as possible. The value of collector current

where oscillations finally vanish is termed the start-oscillation

current. Apparently, the optimum corkscrew-current adjustment to

obtained simulates a velocity spread AV that is proportional to

V , for the starting current in Figure 4.7 remains substantially

constant with V , and this is precisely the behavior predicted

for the small-signal gain from the analysis of Section 2.
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Figure 4.6.- Measured beam-loading conductance vs the slip
parameter. The device is the same as in Figure 4.5,
but the beam current is IColl =0.05 mA, and the
probing-signal level is 0.3 mW. Note the much
narrower magnetic line width.

0.6
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Figure 4.7.- Start-oscillation current vs beam voltage Vo, with
corkscrew current optimized for each VQ. Data refers
to device of Figure 4.3. No oscillations were
detected below a beam voltage of 7 kV.
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(It should be noted that in order to operate with a given cork-

screw at a beam voltage other than the design voltage, the axial

magnetic field in the corkscrew region must be changed so as to

satisfy Eq. (3.1) at all times.) Figure 4.7 also confirms the

existence of a gain threshold, such as was predicted in Section 2,

near VQ = 6 kV, as no oscillations could be observed at or below

this voltage.

In previous work by the author (Ref. 17), the dependence of

1 start on the cavity loading has been investigated. The results

are reproduced in Figure 4.8. as a plot of I . vs the reciprocalstart

of Q , where:

_

QL Qo Qext
(4.11)

In terms of the simple model of Figure 4.2, the start-

oscillation condition corresponds to |G | £ G , + Gext' where

|G | is proportional to the beam current.

But clearly, from their definition:

Gsh + Gext ~ QT (4'LI

and, thus, one finds:

Ge ~ -~ I (beam) = istart (4.13)
LI

and this linear relationship between the start-oscillation

current and 1/QT is confirmed by the data of Figure 4.8. However,
L

the linearity demonstrated in Figure 4. 8. applies only to the
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Figure 4.8.- R.F. output power and efficiency for a TE]_oi resonator
at 9.46 GHz, with \/\c = 0.693. The beam voltage is
15 kV and the cathode diameter is 2 mm. Corkscrew
tuning and current were adjusted to produce maximum
output power at each point, while the collector
current was controlled by temperature-limiting the
cathode.
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superposition of the individual electron emissions, i.e., it con-

firms the absence of r.f. space-charge effects. It does not con-

tradict the observed saturation behavior of the r.f. gain

mechanism, i.e., the phase focusing of the electrons, which has

been shown to be a phenomenon quickly limited by a nonlinearity,

i.e., the saturation of Landau levels.

In summary, the measurements indicate that the electronic

gain of spiraling-beam amplifiers saturates quickly. Nonetheless,

the measured magnitude and the magnetic linewidth of the negative

beam-loading conductance can be fitted well by calculations based

on the linearized small-signal model, provided that an appropriate

axial energy distribution is assumed. A direct measurement of

the latter is very difficult in the region of greatest interest,

i.e., at near-zero axial velocities. The linearized theory,

.therefore, can be used to optimize the device design parameters,

but it cannot in general predict exact device performance.

Measurements of the start-oscillation current confirmed the

absence of r.f. space-charge effects and also the near-independ-

ence of the electronic gain on the beam voltage in the presence

of velocity spread. Harmonic components in the output signal

are negligibly small compared to the fundamental.

4.3 Power and Efficiency

Under large-signal conditions, the interaction between a

spiraling electron beam and a microwave field can no longer be

described by the linearized theory. Attempts have been made to
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predict the large-signal behavior by including some nonlinear

terms in the small-signal equations (Ref. 7) or by direct inte-

gration of the relativistic equation of motion (Ref. 18) . In

either case, the expressions quickly become cumbersome mathe-

matically, and difficult to keep track of physically. We shall

therefore present only measured results, and then attempt to

generalize these results by drawing on the physical insight gained

earlier from the small-signal model.

From Figures 4.3 and 4.4., it already has become evident

that the gain mechanism saturates quickly, at output power levels

of the order of 1% of the d.c. beam power. It is evident,

therefore, that this gain mechanism does not respond well to

strong driving fields. This is unlike the axial-bunching

mechanism used in linear beams, where the best efficiency has

been achieved with klystrons (intense electric-field modulation

of the beam over short distances) as opposed to traveling-wave

tubes (moderate-intensity interaction over extended distances.)

Here one is led to the conclusion that spiraling-beam interaction

takes place more efficiently over long distances, with relatively

moderate driving field amplitudes. This conclusion is confirmed

by the successful traveling-wave design that was reported by

Schriever and Johnson (Ref. 3), which yielded an efficiency of

eight percent.

Measurements of oscillator efficiency were made with a

number of different beams, all operating with a TE(lOl) resonator

(No. 2 in Table 2.3) at 9.46 GHz, at \/\c = 0.693. All the beams
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were generated in the basic arrangement of Figure 3.1, but with

different cathode diameters. The r.f. power output was measured

by using a carefully calibrated 10- or 20-dB directional coupler

in series with a precision calibrated attenuator and a calibrated

crystal. Dependence on the crystal law was eliminated by always

driving the crystal to the same operating point, as observed by

the pulse height displayed on the oscilloscope, and using only

the precision attenuator to determine relative power levels.

The efficiency was defined in terms of the r.f. power and the

product of beam voltage and collector current, ignoring that

part of the beam which was mirrored before reaching the cavity.

Figure 4.9 plots the r.f. power and the efficiency as a function

of the collector current, for a 15-kV beam with a 2-mm cathode

diameter (Ref. 17).

The current variation shown in Figure 4.9 was achieved

by changing the voltage on the control anode and by adjusting

the heater voltage, while the corkscrew and low-field currents

were adjusted to give maximum power output at each point. The

saturation and roll-off of both curves, therefore, reflects the

saturation of the gain mechanism as well as the effects of

changing velocity spread.

The peak efficiency shown in Figure 4.9 is less than one

percent. This was improved upon in later measurements by using

a thinner beam (1-mm cathode diameter) which had a total energy

spread estimated at 50%, probably less than the earlier,
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thicker beam. These later results are plotted in Figures 4.10

and 4.11.

The r.f. power output is seen to rise monotonically to

saturation, accompanied by an increasing scatter in data points.

The efficiency drops monotonically from a peak value near one

percent, as the collector current is increased. This peak

efficiency is of the same order as that found earlier when the

device was operated as an amplifier, at incipient saturation.

It should be noted that in the cases shown in Figures 4.10

and 4.11, the collector current was controlled by varying the

corkscrew current, with the low-field plateau adjusted to a

constant value greater than the corkscrew resonance, in order

to produce the narrowest possible velocity distribution. In

terms of the simple model of Figure 3.4, the effective velocity

spread is thus proportional to the collector current, and the

average gain per electron decreases as the current is increased.

A typical set of oscillograms of the more important operating

variables is given in Figure 4.12. It may be noted that while

the r.f. pulse amplitude reflects the droop in the supply

voltage pulse, there are no amplitude instabilities of the type

that were observed in an earlier device (Ref. 17). The earlier

instabilities had been identified as being due to ion oscillations,

and it is possible that these were related to ripples in the

high-field plateau (see Figure 3.1), which were not present in

the Helmholtz system used here. A further difficulty apparently
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Figure 4.11.- Efficiency vs collector current, calculated from
the data of Figure 4.10.
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D.C. VOLTAGE PULSE
SkV/DIV.
(12 kV NOMWAL)

HORIZONTAL SCALE 5 /tSEC./DIV.

COLLECTOR CURRENT PULSE
ImA/DIV.
(1.2mA NOMINAL)

ATTENUATED RF POWER PULSE
(VOLTAGE SIGNAL FROM SQUARE-
LAW CRYSTAL)

SmV/DIV.

Figure 4.12.- Oscillograms of typical pulse shapes on the TE(lOl)
resonator device, driven by a 12 kV beam launched
from a 1 mm dia. cathode. The corkscrew current
was 8.4 A, and the low field plateau was set at
nearly 10% above the corkscrew resonance. The max.
collector current is 4 mA, and this is reduced to
1.2 mA by the magnetic mirroring action. The d.c.
voltage pulse has some droop which is reflected both
in the collector current and in the domed appearance
of the r.f. output pulse.
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avoided by changing to the Helmholtz system was the occurrence

of an r.f. breakdown phenomenon that occasionally had limited

or blocked oscillations in the early device.

A plot of oscillator efficienvy vs beam voltage is given

in Figure 4.13, showing an approximately linear increase with

V . This result contrasts with the data of Figure 4.7, which

indicated that the small-signal gain was essentially independent

of voltage. However, both results should be interpreted with

some caution, because the velocity distribution in Figure 4.13 was

optimized for each point, and hence, enters as an uncontrolled

variable.

With many electron devices, a certain amount of experimental

adjustment can produce amazing results, and the spiraling-beam

oscillator is no exception. In an attempt to raise the efficiency

of the early TE(lOl) device at X-band, much effort was spent to

eliminate the ripples in the high-field profile by judicious

juggling of solenoid spacings and currents. One of the resulting

field profiles in the resonator region is shown in Figure 4.14,

and this turned out to produce very good results which are

summarized below.

Resonator: TE (101) rectangular = 9.466 GHz
Pulse length = 12 ysec at 60 pps
VQ = 15 kV Cathode dia. = 2 mm
Icoll = 25 mA with corkscrew off
•'•coll = •* ̂  with Icork = 10.5 A
R.F. output = 5.0 W
Electronic efficiency = 6.7%

The high efficiency is misleading, unfortunately, because

from the field profile it is clear that some mirroring could take
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Figure 4.13.- Oscillator Efficiency vs beam voltage, with the

beam from a 3 mm dia. cathode, operated at constant
perveance 6.5 x 10~8 AV~3/2, and a TE(lOl) resonator
at 9.46 GHz. The low field amplitude was adjusted
to track the corkscrew resonance, and the corkscrew
current was optimized for max. r.f. output at each
beam voltage. Collector current typically was 10%
of the cathode current, with some interception at
the control anode.
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Figure 4.14.- Magnetic field profile near the TE(lOl) resonator
that produced the greatest observed power and
efficiency.
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place between the cavity and the collector, spaced 3 cm behind

the cavity center line. The collector current, therefore, is

likely to be less than the current actually driving the cavity,

and this may account for the large apparent efficiency. The

output power level, however, is accurate, and it represents an

improvement over the earlier measurement plotted in Figure 4.8.

A further result in this category was obtained with the

same cavity, driven by a 12 kV beam from a 1-mm dia. cathode.

The other parameters were:

I , , = 18.5 mA with corkscrew offcoll

IcoII = I'4 ̂ With = 10-5 A

RF output = 363 mW

Electronic Efficiency = 2.16%

This result was obtained with the regular, flat high-field

plateau. It should be realized also that the r.f. output power

levels quoted in this report represent actual measured power.

If, as is sometimes done, one were to include the power dissipated

in the resonator walls as part of the total r.f. power produced,

this would increase the quoted values of power level and efficiency

by about 20%.

In summary, the X-band measurements of oscillator efficiency

closely duplicated the earlier results for amplifier efficiency.

This further confirms the picture of the gain mechanism as being

maser-like, with the r.f. output saturating as the population

inversion of the available Landau levels is depleted. However,
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the density of inverted Landau levels in the correct axial energy

range can be improved by better beam design, and the measured

efficiencies near 1% are not an upper limit. Traveling-wave

interaction appears to produce greater efficiencies than resonant

interaction. Some evidence has been observed indicating an

increase of efficiency with beam voltage.

4.4 A Cyclotron Resonator Tube at 94 GHz

Several devices were built and tested to demonstrate

feasibility near the 94 GHz atmospheric window and to explore

the performance limitations in this frequency range. The basic

experimental arrangement closely resembles that of the earlier

X-band setup, as shown in Figure 3.1. The strong magnetic field

(35k Gauss) required to support cyclotron resonance here was

generated with a superconducting solenoid that had a 2.4-cm dia.

room-temperature-access bore. The low-field plateau was derived

from a regular water-cooled solenoid, 76-cm long x 10-cm in.

diameter.

The first device that produced measurable r.f. interaction

utilized a single resonated section of WR-10 waveguide in the

TE(1,0,12) mode, and this cavity was probed with an r.f. signal

at and near the resonant frequency. The 5-kV beam was derived

from a 3-mm dia. cathode. Due probably to poor alignment in the

gun region, there was enough residual rotation on the beam to

cause cyclotron-resonance absorption and emission effects in the

cavity, even with the corkscrew modulation turned off. Applying
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drive current to the corkscrew in fact weakened these effects,

probably because the corkscrew modulation was out of phase with

the inherent beam rotation. ' ,

A later experimental tube gave,better results. This tube

is sketched to (axial) scale in its magnetic field profile, in

Figure 4.15, and some design parameters are listed in Table 4.1.

It may be noted that despite the much higher design fre-

quency, the nominal interaction impedance of this cavity is only

slightly smaller than that for the earlier X-band cavities, thanks

to more careful design. The high-field plateau had an axial

uniformity of one part in 1000 over a 1.5-cm distance, extending

well beyond the 4.1-mm cavity length. The temporal stability of

the high-field plateau was determined by the power supply

regulation, 1 part in 10 , and was even better when the solenoid

was operated in the persistent mode.

The beam in this tube was thinner than before, and hence,

less sensitive to transverse inhomogeneties of the corkscrew

field. The corkscrew itself was allowed to extend for some

distance into the ramp region, so that the final portion would

run slightly above cyclotron resonance. The result was a beam

with a relatively narrow energy distribution, as measured by

using the magnetic ramp as a velocity analyzer (Refs. 24, 25).

That is, with a corkscrew current of 3A, the axial energy spread

at the corkscrew exit was found to be only 2.2%. However, this

spread was then multiplied by the magnetic mirror ratio, so that
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Figure 4.15.- A 94 GHz cyclotron-resonance tube with its
associated axial magnetic field profile. The
axial dimensions are drawn to scale. Only the
low-field plateau and a portion of the magnetic
ramp are shown.
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TABLE 4.1.- DESIGN PARAMETERS FOR A 94 GHz
CYCLOTRON RESONANCE TUBE

Beam Voltage, 10 kV

Cathode current, 32 mA for 70 ysec at 60 pps

Cathode diameter, 1 mm, temperature - limited

2Current density, 13 A/cm (pulsed)

Collector current, 12 mA without corkscrew action

Collector current, 4 mA with corkscrew current, 8A

Corkscrew length, 43 cm (quadrufilar)

Corkscrew diameter, 1.59 cm

Corkscrew pitch, 3 cm

Low field intensity, 700 Gauss ±10 Gauss

High-field intensity, 32,650 Gauss (nominal)

Cavity resonance, 92.59 GHz, TE(011 cyl.) mode

Cavity undercoupled with VSWR - 3.5

Theoretical QQ = 5000

Loaded QL > 1300 (est.)

Cavity impedance, K - 0.32 x 10 ohms

Cavity dimensions 4.1 mm dia. x 5.3 mm long

Cavity position optimized for max, r.f. gain
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in the interaction region it would have been 100-200 percent,

if the simple theory is assumed to hold. The beam passed through

the cavity through 0.8-mm dia. off-center axial openings at the

radial position of maximum transverse electric field strength,

and the presence of these openings decreased the resonance

frequency from a nominal 94 GHz to 92.59 GHz.

The cavity was probed with an external C.W. signal derived

from a reflex klystron that was tuned to the cavity resonance.

The presence of beam current in the cavity was signaled by a

level change in the r.f. power reflected from the cavity, which

would last for the duration of the beam pulse. As the cavity was

undercoupled to begin with, G . > G , , and the addition of a

negative beam-loading conductance (net r.f. power emission from

the beam) would bring the cavity closer to the critical-coupling

condition, G , + G = G . . Thus the ref lected-power level
S i"l S

would decrease. Similarly, it would increase for the case of

net r.f. power absorption by the beam. Figure 4.16 shows some

typical pulse shapes. The largest change in ref lected-power

level for the emissive phase was measured as 3.0 dB, and this

represents an electronic gain. The absorptive phase, which was

reached by a slight decrease in magnetic field, gave a comparable

result. The approximate equality of emission and absorption

peaks and the dependence of these peaks on magnetic tuning and

on the corkscrew excitation are all as expected from the analytical

results derived previously, and thus, they indicate that the tube
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essentially was operating as intended. The small observed gain

can be understood in terms of the large velocity spread on the

beam, and an approximate calculation confirms this, as follows.

If the energy spread due to the corkscrew is estimated at

3%, then with a mirror ratio of 50 the spread in the interaction

region would be 150%. The average height of the collector

current pulse is 12 mA without corkscrew modulation and decreases

to 4 mA with I , = 8A. Clearly, the magnetic mirror action

cuts off any electrons that leave the corkscrew with more than

2% of their energy in the transverse direction, and two-thirds

of the total number of electrons are in that range. The

remaining electrons, therefore, must occupy the transverse energy

range between 0.01 V and 0.02 V at the corkscrew exit, and

between 0.5 V and V in the interaction region, i.e., the

the effective energy spread is 50%, or AV = 5000 V. Looking back

at Figure 2.8, it is seen that the normalized gain function

decreases as 1/AV. It is not surprising, therefore, that with an

estimated AV = 5000 V, the gain is very small. On the other

hand, the fact that the device behaved qualitatively as expected

leads one to believe that satisfactory gain and oscillation can

be obtained, once the problem of energy spread on the beam is

brought under control.

A few further remarks are in order concerning the experi-

mental techniques. It was found that in order to lock the device

into either the emissive or the absorptive phase, the super-
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conducting solenoid had to be swept at an extremely slow rate,

and when the desired point was reached (3265 Gauss nominal), the

magnet was quickly put into the persistent mode, for best

stability. The strong sensitivity to magnetic tuning derives from

the fact that the slip parameter which enters as the inde-

pendent variable in the absorption emission characteristic such

as Figure 2.2, arises as the difference of two large numbers.

Two different mirror ratios were used, 47 and 110, corres-

ponding to low-field intensities of 700 and 300 Gauss, and

calling for corkscrew pitch lengths of 3 cm and 7 cm, respectively.

The gain was substantially the same for either of these beams.

By raising the cathode temperature, it was possible to

increase the collector current to 25 mA and above, with the 700

Gauss low-field plateau, but no increase in gain was observed.

Also, beam transmission became poor and .the collector pulse

began to show strong instability, probably indicating the presence

of ion oscillations. The vacuum generally was maintained at

10~ T , or better, by an attached 1£ ion getter pump.

Apparently the great current densities in the gun and low-field

region also produced a greater velocity spread, thereby canceling

the intended effect of providing a greater density of energetic

electrons with near-zero axial velocities.
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5. CONCLUSIONS

This report has described an in-house exploratory develop-

ment program concerned with millimeter and submillimeter wave

generation and amplification with devices where a thin, solid

beam of individually spiraling electrons of moderate energy

(10-20 kV) interacts at the cyclotron frequency with the trans-

verse electric field of a smooth waveguide or cavity. While the

bulk of this effort has been devoted to the observation and

analysis of the device performance at X-band, some experimental

work also has been done to prove feasibility at 94 GHz.

Power outputs near 5W and electronic efficiencies near 3%

were obtained at X-band and moderate gain was observed at 94 GHz.

The small-signal theory gives a good fit to the X-band data, and

the device behavior at 94 GHz also is explained by the theory.

The performance is limited chiefly by the velocity spread in the

spiraling electron beam, and once this problem can be brought

under control, high-power generation of millimeter waves appears

quite feasible with this type of device.

R. F. space-charge effects appear to be negligible, but

d.c. space-charge forces apparently prevent axially slow-moving

electrons from participating in the r.f. interaction, and for

this reason a hollow-beam geometry is to be preferred. The quick

saturation of the r.f. gain mechanism implies that extended-

interaction regions (waveguides or long low-Q cavities) are likely

to yield better efficiencies than the high-intensity fields of

short-cavity resonators, and the results reported in the litera-

ture confirm this point.
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A decrease of the efficiency at higher frequencies is to be

expected, mainly because as the axial magnetic-field intensity

is raised, the width of the energy spectrum of the spiraling

electrons tends to increase also. However, operation at integral

multiples of the cyclotron frequency has been reported with over-

moded schemes, i.e., by designing the electromagnetic field

configuration such that the fundamental cyclotron rotation couples

to some waveguide or cavity mode at a harmonically related fre-

quency. This approach in one case reportedly has yielded an

electronic efficiency of 3%, by exciting the cylindrical TE(0,2,1)

mode at 25 GHz, corresponding to the second harmonic.

The efficiency tends to increase as the beam voltage is

raised. However, a major advantage of this type of device is

precisely the fact that operation with moderate beam voltages

(10-20 kV) is possible, so that elaborate high-voltage power

supplies or r.f. pumping schemes are not required. The most

fruitful approach to raise the efficiency would seem to be by

controlling the width of the electronic energy spread, and by

maximizing the interaction impedance of the r.f. structure.

In summary, the analytical and experimental results indicate

that the spiraling-beam device represents a feasible approach

towards generating watts of c.w. power at mm and sub-mm wave-

lengths, provided that ways can be found to generate beams that

have a narrow energy spectrum. Any further development effort

should address itself first and foremost to this problem.
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